Table of Contents

1. Implementation Guide .. 2–9
 This descriptive guide will assist you in integrating the DVD science and education content into your instructional program.

2. National Science Education Standards 10
 See the complete National Science Education Standards (NSES) correlated for this program.

3. Episode Guide .. 11
 Step-by-step procedures make it easy to complete the experiments shown in the program. “More Interesting Stuff to Do” gives more experiments that extend student learning.

4. Lesson Planning Worksheet ... 12–13
 This template helps you incorporate all the features of the Bill Nye DVD into your daily lesson plans.

5. Student “Know / New” Chart .. 14
 A “Know-New” T-Chart assesses students’ prior knowledge and what they learned.

6. Student Recording Sheet .. 15
 This handout gives you a standardized format that students can fill out as they conduct an experiment.

7. Glossary ... 16-17
 Use the terms and definitions found here to assist you in direct vocabulary instruction. The glossary terms are also found on the DVD.

8. Quiz .. 18
 This written version of the interactive quiz on the DVD provides a ready-to-go written test. Multiple choice and true-false items address key concepts found in the standards and in the program.

9. Quiz Answer Key .. 19
 A separate page contains the quiz answer key.
Implementation Guide

Welcome to Disney’s Bill Nye DVD collection!
With the help of this Guide you can bring instructional DVDs into your science curriculum.

What’s on the DVD?
Bill Nye DVDs expand the educational features of Bill Nye the Science Guy programs. Each DVD provides students with science content through video clips aligned with National Science Education Standards (NSES) and a host of other resources.

Short video clips aligned with the NSES provide a unique opportunity for you to enhance your lessons using DVD technology. Now you can show a video clip, or even short segments of a clip, on command. But there are a host of other features, too! See the chart below for a summary.

From the Main menu, there are three chief sections:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch Program Menu</td>
<td>From this menu, you can play the program straight through or use the clips to customize your viewing.</td>
</tr>
<tr>
<td>Teacher Support</td>
<td>From this menu, you can access this Teacher’s Guide, the Glossary, Internet Links, and the Quiz.</td>
</tr>
<tr>
<td>Bonus Materials</td>
<td>Use this menu to try a different discussion starter, download a special screen-saver, or check out never-before-seen footage.</td>
</tr>
</tbody>
</table>

From the Watch Program menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Program</td>
<td>Play the entire program from start to finish.</td>
</tr>
<tr>
<td>Bilingual Mode</td>
<td>View the entire program or clips in English or Spanish.</td>
</tr>
<tr>
<td>Glossary Mode</td>
<td>Make links to Glossary terms appear during the program.</td>
</tr>
<tr>
<td>Program Overview</td>
<td>View the program introduction, in which Bill discusses the topic covered.</td>
</tr>
<tr>
<td>Try This</td>
<td>Show students demonstrating science concepts.</td>
</tr>
<tr>
<td>Way Cool Scientist</td>
<td>Meet a real scientist who talks about his or her area of study.</td>
</tr>
<tr>
<td>Bill’s Demonstration</td>
<td>Look at a science demonstration conducted by Bill Nye.</td>
</tr>
<tr>
<td>Music Video</td>
<td>Enjoy a short music video that summarizes the topic in an age-appropriate and entertaining manner.</td>
</tr>
<tr>
<td>Science Standards</td>
<td>Take advantage of short video clips from the program, which are aligned with National Science Education Standards.</td>
</tr>
</tbody>
</table>
From the **Teacher Support** menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Quiz</td>
<td>Give students a quiz to take independently or as a class. Seven to ten quiz items are aligned with the National Science Education Standards. The items are in multiple-choice or true-false format. Each wrong answer links to a standards-aligned video clip. At the end of the quiz, a scoring function reveals the number of correct initial answers.</td>
</tr>
<tr>
<td>Glossary</td>
<td>Check out definitions of key terms and view video clips that reinforce the concepts.</td>
</tr>
<tr>
<td>DVD Features</td>
<td>View a quick overview of the features found on the DVD.</td>
</tr>
<tr>
<td>Teacher’s Guide</td>
<td>Print out or view this comprehensive Teacher’s Guide in PDF format.</td>
</tr>
<tr>
<td>Internet Link</td>
<td>Link to the Bill Nye area of Disney’s Edustation Web site, where you can find links to Internet sites related to the content of each Bill Nye program.</td>
</tr>
</tbody>
</table>

From the **Bonus Materials** menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonus Material</td>
<td>Find out what wasn’t in the episode! In most cases, there’s more of the Way Cool Scientist interview, Bill Nye outtakes, and an extra discussion starter.</td>
</tr>
<tr>
<td>Additional Clips</td>
<td>See trailers of related DVDs and videos.</td>
</tr>
<tr>
<td>Screen-Saver</td>
<td>Download this cool screen-saver for your computer.</td>
</tr>
</tbody>
</table>

The Planning Process

This Guide provides a Lesson Planning Worksheet (see page 12), which can assist you in setting up your instruction around a topic. The following sections of this Implementation Guide are offered to assist your planning process:

- Determining Objectives and Linking to Standards
- The Learning Cycle
 - Explore
 - Apply
 - Extend
 - Assess
Determining Objectives and Linking to Standards

1. The NSES Teaching Standard A states that science teachers must “select science content and adapt and design curricula to meet the interest, knowledge, understanding, abilities, and experience of students.”

The NSES recommends that teachers “integrate . . . a practical structure for the sequence of activities, and the content to be learned.” The primary instructional model recommended by the NSES is inquiry into authentic student-generated questions about natural or designed phenomena. Since most state and local standards documents were derived from the NSES, you will find that your local and state standards match closely with content standards in the Bill Nye DVD.

Each DVD contains a menu of clips that are aligned with the NSES. You can review the standards and their aligned clips in the Science Standards menu under Watch Program. Also, the Standards listed on page 10 of this Guide allow you to look at additional NSES content standards that are addressed on the video. Here’s an example of the content standards and clips aligned with the Bill Nye DVD entitled *Blood and Circulation*:

Life Science Standards (NSES) Addressed in *Blood and Circulation*

Life Science:
Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function.

 Aligned clips:
 - 1 Blood vessels
 - 2 Heart pump and bloodstream
 - 3 Heart valves and blood circulation
 - 4 White blood cells
 - 5 Capillaries

- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection.

 Aligned clips:
 - 6 Heart pump
 - 7 Heart muscle
 - 8 Pumping blood to brain

Sample Objectives for Blood and Circulation

In this activity students will:
- Observe and describe a body system responsible for supply and transport.
- Use this information to define a body system.
- Ask questions about the circulatory system.
- Explain how structure complements function in organs of the circulatory system.
- Cite examples of current research related to this system.

The Learning Cycle

The learning cycle is a sequence of activities that involve students in the learning process. The sequence found here is based on research from Lawson, Abraham, and Renner published in 1989. That has been adapted to include: Explore, Apply, Extend and Assess:

Explore: Involves assessing students’ prior knowledge and providing opportunities for students to interact with content from the video.

Apply: Includes having students use the content learned during the Explore section in a new way that is meaningful to future learning.

Extend: Allows students to conduct further research around an area of interest within the topic.

Assess: Provides strategies meant to inform students and teachers about the content and processes that have been learned.

Explore

The NSES Teaching Standard B states: “Teachers of science guide and facilitate learning.” This standard addresses the constant need to balance your predetermined goals with allowing students to set and meet their own learning goals.

Focus and Support Inquiries: Support student inquiries by making decisions about “when to provide information” and “when to connect students with other sources.” Knowing the best time to intervene is often determined by allowing students to ask questions and to explore concepts openly.
The NSES Teaching Standard C states: “Teachers of science engage in ongoing assessment of their teaching and of student learning.”

Assess in Order to Guide Teaching: The Program Overview or the Discussion Starter on the DVD can be used to gauge students’ prior knowledge. You can use student responses to make decisions about appropriate instruction and adaptations in order to meet the needs of individual students. Assessment can be in the form of student reflections from standards-aligned video clips or answers to questions found on the science quiz. Or, as in the following example, a simple graphic organizer can facilitate a formative assessment.

Example: T-Chart from Blood and Circulation

1. Ask students to fill out the “Know-New” T-Chart (see page 14). Have them list what they already know about the circulatory system (heart, blood vessels, blood, etc.) on the left side of their charts.

2. Show the Program Overview for Blood and Circulation. On the right side of the chart, have students list new things they have learned from watching the clip. Walk around the room and assist students in filling in their T-Charts. Replay the program as necessary to allow students to review sections of interest.

3. Once students have completed their charts, ask them to share what they have listed in the “New” column. Write these on the board. Have students write their own working definitions of the circulatory system. Once students have completed their definitions, collect and review their work to assess prior knowledge.

Conduct direct vocabulary instruction in the Explore phase. Research suggests that:

- Students must encounter words in context more than once to learn them.
- Instruction in new words enhances learning those words in context.
- One of the best ways to learn a new word is to associate an image with it.
- Direct vocabulary instruction on words that are critical to new content produces the most powerful learning.

Use the DVD Glossary with the linked video clips to expose students to new vocabulary words in context, along with associated video images. You can also find a printed version of the glossary terms in this Guide on page 16.
Example: Using the Glossary for Direct Vocabulary Instruction

Blood and Circulation

1. Present students with a brief explanation or description of the new term or phrase from the glossary. For example: “Capillary: A small blood vessel that connects arteries and veins.”

2. Present students with a nonlinguistic representation of the new term or phrase. Show the video clip associated with the term “capillary.”

3. Ask students to generate their own verbal description of “capillary.”

4. Ask students to create their own nonlinguistic representation of “capillary.”

5. Periodically ask students to review the accuracy of their explanations and representations. This can be done after the Apply activities.

Apply

Based on the information you gained from the Explore assessments, design appropriate activities for your students. Check the experiments listed in the Episode Guide (see page 11) for explanations of the demonstrations from the Bill Nye program as well as for additional experiments designed to help apply the knowledge gained.

In the following example from Blood and Circulation, the standards-based video clips provide background information, and an experiment from the Guide helps students apply what they have learned about arteries and veins.

Example: The Structure and Function of Arteries and Veins

1. Have students begin “Know-New” T-Charts, focusing on what they already know about the structure and function of blood vessels, arteries, and veins.

2. Watch the following chapters from the Bill Nye DVD Blood and Circulation:
 - Blood vessels
 - Heart pump and bloodstream
 - Capillaries

3. Complete the “Know-New” T-Charts.

4. Give students copies of the Student Recording Sheet (see page 15) and have them fill the sheets out as they conduct their experiments.

5. Do the experiment entitled “Pump it Up!” from the Blood and Circulation Episode Guide, in which students observe the apparent effects of pressure on arteries and veins.

6. Write down any remaining questions about the structure and function of blood vessels, arteries, and veins.
Extend

The NSES Teaching Standard D states: “Teachers of science design and manage learning environments that provide students with the time, space, and resources needed for learning science.” School administrators, parents, and the community can assist teachers in providing local resources that make science lessons pertinent and meaningful.

Identify and Use Resources Outside of the School: “The school science program must extend beyond the walls of the school.” Each Bill Nye DVD contains resources designed to facilitate such understanding, including:

- Way Cool Scientist, found in both Watch Program and Bonus Materials, in which scientists discuss their current areas of study. This real-world connection often results in a deeper student understanding of a particular career.
- Disney’s Edustation Web site, where relevant Internet links provide a starting point for students to further explore science topics.
- Try these video clips, with activities parents and students can do at home. The questions generated by students from these experiences can be used as foundations from which they may conduct their own research.
- Standards-aligned video clips and Bill’s demonstration video clips, which can help generate topics for further research. After viewing the clips, have students list their questions, perhaps about the most current developments in a topic. By conducting online or library research, students will find answers to their questions and will learn about a topic in greater depth.

Example: Conducting Student Research Using Blood and Circulation

Ask students to choose one of the questions they had after completing the activities from Blood and Circulation. An example of a student research question might be, “How has the technology related to artificial hearts advanced in the last ten years?” Explain to students that they will be conducting research to find answers to their questions. Some students may want to complete online or library research, others may want to ask an expert in the field, while others may want to design and conduct a scientific investigation. Encourage students to write a detailed procedure for finding answers to their questions. Ask students to find one or more examples of current research dealing with the circulatory system that is related to their question. Note: Students with similar questions may work together to complete the assignment.
Assess

Once students have conducted the research, you may choose to assess them in a number of different ways:

- By having students write about what they learned in a journal.
- By having students submit projects or reports.
- By having students take the program quiz to gauge their understanding of certain facts in the video. You can either print the quiz (found in this Guide on page 18) and have each student complete it individually or use the DVD screen version and the scoring feature for whole-class assessment.
- By designing other standards-aligned questions to augment those that are provided.

While the quiz will provide you with information about what the students have learned, it does not assess how students have processed the information. Below you will find assessment ideas that can be used to measure both content and process.

A Sample Assessment for Blood and Circulation

1. Explain to students that an important aspect of scientific inquiry is to communicate findings to others. In this assessment, students will present the following information to their peers:
 - The question they investigated.
 - The method that was used to find answers to their question.
 - Problems or successes during the search.
 - Answers to their question.
 - Current research related to their question.
 - New questions that have arisen.

2. Distribute the rubric found in the Lesson Planning Worksheet (see page 13) to students so they know how they will be assessed. Make sure students understand the criteria found in the rubric. Before you begin, you may want to allow students to make changes to the rubric so that it is clearer or makes more sense from their perspectives.

3. Allow students time to gather information to answer their questions and to prepare for their presentations. As students conduct this work, walk around the room and ask questions to assess their progress and provide input as needed.

4. Take a few minutes to clarify the rules of the presentation with the students. You may want to have multiple copies of the rubric available so that peers can rate the presentations.

5. As presentations are made, assess the quality of the student’s work as thoroughly and as equitably as you possibly can.

Congratulations! You have now completed the steps to set up a lesson plan using the Lesson Planning Worksheet. You have also explored many of the features of the Bill Nye DVD as well as the supplemental information found in this Teacher’s Guide. And most important, you’ve made significant strides toward incorporating DVD technology into your day-to-day instruction.
Science as Inquiry

Understandings about scientific inquiry

- Identify questions that can be answered through scientific investigations.
- Develop descriptions, explanations, predictions, and models using evidence.
- Communicate scientific procedures and explanations.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

Motions and forces

- An object that is not being subjected to a force will continue to move at a constant speed and in a straight line.
- If more than one force acts on an object along a straight line, then the forces will reinforce or cancel one another, depending on their direction and magnitude. Unbalanced forces will cause changes in the speed or direction of an object's motion.

Transfer of energy

- Energy is a property of many substances and is associated with heat, light, electricity, mechanical motion, sound, nuclei, and the nature of a chemical. Energy is transferred in many ways.

Life Science

Regulation and behavior

- Behavior is one kind of response an organism can make to an internal or environmental stimulus. A behavioral response requires coordination and communication at many levels, including cells, organ systems, and whole organisms. Behavioral response is a set of actions determined in part by heredity and in part from experience.
- An organism's behavior evolves through adaptation to its environment. How a species moves, obtains food, reproduces, and responds to danger are based in the species' evolutionary history.

Science and Technology

Abilities of technological design

- Design a solution or product.
- Implement a proposed design.
- Communicate the process of technological design.

Understandings about science and technology

- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
Episode Guide

Friction

Nifty Questions in This Episode

<table>
<thead>
<tr>
<th>Question</th>
<th>Awesome Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>What is friction?</td>
<td>Friction is the force resisting motion when things rub on each other.</td>
</tr>
<tr>
<td>What causes heat?</td>
<td>Friction generates energy (e.g., rubbing hands together causes heat).</td>
</tr>
<tr>
<td>Do skates create friction on ice?</td>
<td>Skates do not create friction on ice. Tiny water droplets form between the blades and the ice, which makes the surface slippery.</td>
</tr>
</tbody>
</table>

Experiments shown on the video:

HOVER CRAFT

Objective: To design an object that will hover over a flat surface on a cushion of air.

- Cut a 15-centimeter circle out of heavy cardboard.
- Glue a plastic bottle cap to the center of the cardboard circle (open end of the cap glued down) and place the circle on a flat surface.
- Punch a hole in the top of the cap and through the cardboard with a large nail.
- Blow up a balloon and twist the end.
- Slip the end of the balloon over the cap and release.
- The cardboard will hover above the flat surface on a layer of air.

More interesting stuff to do:

A FRICTIONAL BRICK

Objective: To determine the amount of force needed to pull bricks over different surfaces.

- Use approximately one meter of string. Tie the string around a brick lengthwise. Make a loop in the end of the string, leaving about 20 centimeters of string hanging.
- Measure the weight of the brick using a spring scale (in ounces, pounds, or grams.)
- Hook the end of the spring scale through the loop on the string. Hold the other end of the scale and pull the brick on a glass surface.
- Using the reading on the spring scale, record the amount of force needed to start the brick moving and to keep it moving.
- Make a chart to list different surfaces, different amounts of bricks, and different force measurements.
- Repeat the same test on a carpet and a linoleum or cement floor; record the test data.
- Place two bricks on top of the first brick and repeat the first trial procedure.
- Repeat the process, using one brick on top of twelve straws on a wooden or cement surface; record all data.
- Create your own test, using bricks for comparison on different surfaces (grass, cardboard, tile, etc.).
- Do the various surfaces determine the amount of friction generated?

ROLL ON

Objective: To observe how friction affects the rolling resistance on different surfaces.

- Use a basketball, playground ball, and volleyball, each of which will hold between 8 and 13 pounds of air pressure.
- Use an inflation needle, ball pump, and an air pressure gauge to maintain the correct air pressure.
- Roll each ball on each of three different surfaces—carpet, linoleum or cement, and grass—for 20 meters.
- Record the time (in seconds) that it takes each ball to travel 20 meters on all three surfaces.
- Release 2 pounds of air pressure after each trial; repeat this step for all surfaces.
- Keep repeating the trials until all the air in each ball is exhausted.
- Record the data from all trial surfaces.
- How is the rolling resistance of each ball affected by the surface on which the ball is rolling, the texture of the ball’s surface, and the amount of air pressure in each ball? Explain, using data from the trials to support your conclusions.
Lesson Planning Worksheet

<table>
<thead>
<tr>
<th>Lesson Title</th>
<th>National Science Educational Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Time Required</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials Needed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Explore</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Apply</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Extend</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As presentations are made, assess the quality of the student's work as thoroughly and as equitably as you possibly can. The following criteria can be used to assist in your assessment.

Name of Student __________________________

Question Investigated __________________________

<table>
<thead>
<tr>
<th>Initial Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods for Finding Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>
Title of Experiment __

Question: (What are you testing?) _______________________________________

Procedure: (Describe the experiment) _______________________________________

Materials: (List what you used) __

Observations: (Record what happened) ______________________________________

Results: (Make your own data table) __

Conclusions: (Use your observations and results to describe what you learned) ___
Friction
Resistance to the motion of one surface over another. The amount of friction depends on the smoothness of the contacting surfaces as well as the force with which they are pressed together.

Gravity
The force of attraction that exists between all bodies. Gravity often refers to the force by which bodies tend to fall toward the center of the Earth.

Heat
Energy in the process of being transferred from one object to another because of the temperature difference between them. Heat always moves from warm areas to cooler ones.
Wind Tunnel
A tunnel-like passage through which air is blown at a known velocity (speed and direction) to investigate air flow patterns around an object (airplane part, model car).

Drag
Frictional force or resistance between the surface of a moving object and air.
Quiz
Friction

True or False? Circle T or F

1. Gravity makes your feet stick to the floor. T or F
2. Friction makes it difficult to move a heavy object over a flat surface. T or F
3. The force of gravity works in a direction that is horizontal to the Earth’s surface. T or F
4. Friction can change work into heat. T or F
5. The friction between our fingerprints and other objects allows us to pick up those objects. T or F
6. Ice skates create friction on ice. T or F
7. Friction between the air and a spacecraft can burn away parts of the spacecraft’s heat shield. T or F

Multiple Choice: Circle the letter of the best answer

8. Which of the following statements regarding friction is correct?
 A. There is less friction between the floor and a rolling bowling ball than there is between the floor and a sliding bowling ball.
 B. There is less friction between the floor and a square bowling ball than there is between the floor and a round bowling ball.
 C. A square bowling ball will travel the same distance as a round bowling ball if the force exerted on each is the same.
 D. There is no friction between the smooth bowling ball and the smooth floor.

9. Which of the following statements correctly describes the role that friction plays in the motion of a train?
 A. Friction is necessary to make a train stop.
 B. Friction is necessary for traction as the train starts moving.
 C. Friction is necessary to keep the train on the track as it is moving.
 D. All of the above.

10. Which of the following is a correct statement regarding the mucous that slugs make?
 A. Slugs cover themselves in mucous.
 B. Slugs use mucous to attach themselves to other surfaces.
 C. Mucous reduces the friction between the slug and other surfaces.
 D. All of the above.
Answer Key
Friction

1. F
2. T
3. F
4. T
5. T
6. F
7. T
8. A
9. D
10. D

WIND TUNNEL
SCIENCE