Table of Contents

1. **Implementation Guide** 2–9
This descriptive guide will assist you in integrating the DVD science and education content into your instructional program.

2. **National Science Education Standards** 10-12
See the complete *National Science Education Standards (NSES)* correlated for this program.

3. **Episode Guide** ... 13
Step-by-step procedures make it easy to complete the experiments shown in the program.
“More Interesting Stuff to Do” gives more experiments that extend student learning.

4. **Lesson Planning Worksheet** 14–15
This template helps you incorporate all the features of the Bill Nye DVD into your daily lesson plans.

5. **Student “Know / New” Chart** 16
A “Know-New” T-Chart assesses students’ prior knowledge and what they learned.

6. **Student Recording Sheet** 17
This handout gives you a standardized format that students can fill out as they conduct an experiment.

7. **Glossary** ... 18–19
Use the terms and definitions found here to assist you in direct vocabulary instruction.
The glossary terms are also found on the DVD.

8. **Quiz** ... 20
This written version of the interactive quiz on the DVD provides a ready-to-go written test. Multiple choice and true-false items address key concepts found in the standards and in the program.

9. **Quiz Answer Key** .. 21
A separate page contains the quiz answer key.
Welcome to Disney’s Bill Nye DVD collection!
With the help of this Guide you can bring instructional DVDs into your science curriculum.

What’s on the DVD?
Bill Nye DVDs expand the educational features of Bill Nye the Science Guy programs. Each DVD provides students with science content through video clips aligned with National Science Education Standards (NSES) and a host of other resources.

Short video clips aligned with the NSES provide a unique opportunity for you to enhance your lessons using DVD technology. Now you can show a video clip, or even short segments of a clip, on command. But there are a host of other features, too! See the chart below for a summary.

From the Main menu, there are three chief sections:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch Program Menu</td>
<td>From this menu, you can play the program straight through or use the clips to customize your viewing.</td>
</tr>
<tr>
<td>Teacher Support</td>
<td>From this menu, you can access this Teacher’s Guide, the Glossary, Internet Links, and the Quiz.</td>
</tr>
<tr>
<td>Bonus Materials</td>
<td>Use this menu to try a different discussion starter, download a special screen-saver, or check out never-before-seen footage.</td>
</tr>
</tbody>
</table>

From the Watch Program menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Program</td>
<td>Play the entire program from start to finish.</td>
</tr>
<tr>
<td>Bilingual Mode</td>
<td>View the entire program or clips in English or Spanish.</td>
</tr>
<tr>
<td>Glossary Mode</td>
<td>Make links to Glossary terms appear during the program.</td>
</tr>
<tr>
<td>Program Overview</td>
<td>View the program introduction, in which Bill discusses the topic covered.</td>
</tr>
<tr>
<td>Try This</td>
<td>Show students demonstrating science concepts.</td>
</tr>
<tr>
<td>Way Cool Scientist</td>
<td>Meet a real scientist who talks about his or her area of study.</td>
</tr>
<tr>
<td>Bill’s Demonstration</td>
<td>Look at a science demonstration conducted by Bill Nye.</td>
</tr>
<tr>
<td>Music Video</td>
<td>Enjoy a short music video that summarizes the topic in an age-appropriate and entertaining manner.</td>
</tr>
<tr>
<td>Science Standards</td>
<td>Take advantage of short video clips from the program, which are aligned with National Science Education Standards.</td>
</tr>
</tbody>
</table>
From the **Teacher Support** menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Quiz</td>
<td>Give students a quiz to take independently or as a class. Seven to ten quiz items are aligned with the National Science Education Standards. The items are in multiple-choice or true-false format. Each wrong answer links to a standards-aligned video clip. At the end of the quiz, a scoring function reveals the number of correct initial answers.</td>
</tr>
<tr>
<td>Glossary</td>
<td>Check out definitions of key terms and view video clips that reinforce the concepts.</td>
</tr>
<tr>
<td>DVD Features</td>
<td>View a quick overview of the features found on the DVD.</td>
</tr>
<tr>
<td>Teacher’s Guide</td>
<td>Print out or view this comprehensive Teacher’s Guide in PDF format.</td>
</tr>
<tr>
<td>Internet Link</td>
<td>Link to the Bill Nye area of Disney’s Edustation Web site, where you can find links to Internet sites related to the content of each Bill Nye program.</td>
</tr>
</tbody>
</table>

From the **Bonus Materials** menu, you can:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonus Material</td>
<td>Find out what wasn’t in the episode! In most cases, there’s more of the Way Cool Scientist interview, Bill Nye outtakes, and an extra discussion starter.</td>
</tr>
<tr>
<td>Additional Clips</td>
<td>See trailers of related DVDs and videos.</td>
</tr>
<tr>
<td>Screen-Saver</td>
<td>Download this cool screen-saver for your computer.</td>
</tr>
</tbody>
</table>

The Planning Process

This Guide provides a Lesson Planning Worksheet (see page 12), which can assist you in setting up your instruction around a topic. The following sections of this Implementation Guide are offered to assist your planning process:

- Determining Objectives and Linking to Standards
- The Learning Cycle
 - Explore
 - Apply
 - Extend
 - Assess
Determining Objectives and Linking to Standards

1. The NSES Teaching Standard A states that science teachers must “select science content and adapt and design curricula to meet the interest, knowledge, understanding, abilities, and experience of students.”

The NSES recommends that teachers “integrate . . . a practical structure for the sequence of activities, and the content to be learned.” The primary instructional model recommended by the NSES is inquiry into authentic student-generated questions about natural or designed phenomena. Since most state and local standards documents were derived from the NSES, you will find that your local and state standards match closely with content standards in the Bill Nye DVD.

Each DVD contains a menu of clips that are aligned with the NSES. You can review the standards and their aligned clips in the Science Standards menu under Watch Program. Also, the Standards listed on page 10 of this Guide allow you to look at additional NSES content standards that are addressed on the video. Here’s an example of the content standards and clips aligned with the Bill Nye DVD entitled Blood and Circulation:

Life Science Standards (NSES) Addressed in Blood and Circulation

Life Science:
Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function.

 Aligned clips:
 - 1 Blood vessels
 - 2 Heart pump and bloodstream
 - 3 Heart valves and blood circulation
 - 4 White blood cells
 - 5 Capillaries

- The human organism has systems for digestion, respiration, reproduction, circulation, excretion, movement, control, and coordination, and for protection.

 Aligned clips:
 - 6 Heart pump
 - 7 Heart muscle
 - 8 Pumping blood to brain
2. Determine your objectives for the lesson and how these objectives address the standards.

Sample Objectives for *Blood and Circulation*

In this activity students will:

- Observe and describe a body system responsible for supply and transport.
- Use this information to define a body system.
- Ask questions about the circulatory system.
- Explain how structure complements function in organs of the circulatory system.
- Cite examples of current research related to this system.

3. Design a learning cycle of instructional experiences and assessments for the students to engage in that will help students meet these standards. Students may be given teacher-planned investigations or may be guided to design their own investigations.

The Learning Cycle

The learning cycle is a sequence of activities that involve students in the learning process. The sequence found here is based on research from Lawson, Abraham, and Renner published in 1989. That has been adapted to include: Explore, Apply, Extend and Assess:

Explore: Involves assessing students’ prior knowledge and providing opportunities for students to interact with content from the video.

Apply: Includes having students use the content learned during the Explore section in a new way that is meaningful to future learning.

Extend: Allows students to conduct further research around an area of interest within the topic.

Assess: Provides strategies meant to inform students and teachers about the content and processes that have been learned.

Explore

The NSES Teaching Standard B states: “Teachers of science guide and facilitate learning.” This standard addresses the constant need to balance your predetermined goals with allowing students to set and meet their own learning goals.

Focus and Support Inquiries: Support student inquiries by making decisions about “when to provide information” and “when to connect students with other sources.” Knowing the best time to intervene is often determined by allowing students to ask questions and to explore concepts openly.
The NSES Teaching Standard C states: “Teachers of science engage in ongoing assessment of their teaching and of student learning.”

Assess in Order to Guide Teaching: The Program Overview or the Discussion Starter on the DVD can be used to gauge students’ prior knowledge. You can use student responses to make decisions about appropriate instruction and adaptations in order to meet the needs of individual students. Assessment can be in the form of student reflections from standards-aligned video clips or answers to questions found on the science quiz. Or, as in the following example, a simple graphic organizer can facilitate a formative assessment.

Example: T-Chart from Blood and Circulation

1. Ask students to fill out the “Know-New” T-Chart (see page 14). Have them list what they already know about the circulatory system (heart, blood vessels, blood, etc.) on the left side of their charts.

2. Show the Program Overview for Blood and Circulation. On the right side of the chart, have students list new things they have learned from watching the clip. Walk around the room and assist students in filling in their T-Charts. Replay the program as necessary to allow students to review sections of interest.

3. Once students have completed their charts, ask them to share what they have listed in the “New” column. Write these on the board. Have students write their own working definitions of the circulatory system. Once students have completed their definitions, collect and review their work to assess prior knowledge.

Conduct direct vocabulary instruction in the Explore phase. Research suggests that:

- Students must encounter words in context more than once to learn them.
- Instruction in new words enhances learning those words in context.
- One of the best ways to learn a new word is to associate an image with it.
- Direct vocabulary instruction on words that are critical to new content produces the most powerful learning.

Use the DVD Glossary with the linked video clips to expose students to new vocabulary words in context, along with associated video images. You can also find a printed version of the glossary terms in this Guide on page 16.
Example: Using the Glossary for Direct Vocabulary Instruction

Blood and Circulation

1. Present students with a brief explanation or description of the new term or phrase from the glossary. For example: “Capillary: A small blood vessel that connects arteries and veins.”

2. Present students with a nonlinguistic representation of the new term or phrase. Show the video clip associated with the term “capillary.”

3. Ask students to generate their own verbal description of “capillary.”

4. Ask students to create their own nonlinguistic representation of “capillary.”

5. Periodically ask students to review the accuracy of their explanations and representations. This can be done after the Apply activities.

Apply

Based on the information you gained from the Explore assessments, design appropriate activities for your students. Check the experiments listed in the Episode Guide (see page 11) for explanations of the demonstrations from the Bill Nye program as well as for additional experiments designed to help apply the knowledge gained.

In the following example from *Blood and Circulation*, the standards-based video clips provide background information, and an experiment from the Guide helps students apply what they have learned about arteries and veins.

Example: The Structure and Function of Arteries and Veins

1. Have students begin “Know-New” T-Charts, focusing on what they already know about the structure and function of blood vessels, arteries, and veins.

2. Watch the following chapters from the Bill Nye DVD *Blood and Circulation*:
 - Blood vessels
 - Heart pump and bloodstream
 - Capillaries

3. Complete the “Know-New” T-Charts.

4. Give students copies of the Student Recording Sheet (see page 15) and have them fill the sheets out as they conduct their experiments.

5. Do the experiment entitled “Pump it Up!” from the *Blood and Circulation* Episode Guide, in which students observe the apparent effects of pressure on arteries and veins.

6. Write down any remaining questions about the structure and function of blood vessels, arteries, and veins.
Extend

The NSES Teaching Standard D states: “Teachers of science design and manage learning environments that provide students with the time, space, and resources needed for learning science.” School administrators, parents, and the community can assist teachers in providing local resources that make science lessons pertinent and meaningful.

Identify and Use Resources Outside of the School: “The school science program must extend beyond the walls of the school.” Each Bill Nye DVD contains resources designed to facilitate such understanding, including:

■ Way Cool Scientist, found in both Watch Program and Bonus Materials, in which scientists discuss their current areas of study. This real-world connection often results in a deeper student understanding of a particular career.

■ Disney’s Edustation Web site, where relevant Internet links provide a starting point for students to further explore science topics.

■ Try these video clips, with activities parents and students can do at home. The questions generated by students from these experiences can be used as foundations from which they may conduct their own research.

■ Standards-aligned video clips and Bill’s demonstration video clips, which can help generate topics for further research. After viewing the clips, have students list their questions, perhaps about the most current developments in a topic. By conducting online or library research, students will find answers to their questions and will learn about a topic in greater depth.

Example: Conducting Student Research Using Blood and Circulation

Ask students to choose one of the questions they had after completing the activities from Blood and Circulation. An example of a student research question might be, “How has the technology related to artificial hearts advanced in the last ten years?” Explain to students that they will be conducting research to find answers to their questions. Some students may want to complete online or library research, others may want to ask an expert in the field, while others may want to design and conduct a scientific investigation. Encourage students to write a detailed procedure for finding answers to their questions. Ask students to find one or more examples of current research dealing with the circulatory system that is related to their question. Note: Students with similar questions may work together to complete the assignment.
Assess

Once students have conducted the research, you may choose to assess them in a number of different ways:

- By having students write about what they learned in a journal.
- By having students submit projects or reports.
- By having students take the program quiz to gauge their understanding of certain facts in the video. You can either print the quiz (found in this Guide on page 18) and have each student complete it individually or use the DVD screen version and the scoring feature for whole-class assessment.
- By designing other standards-aligned questions to augment those that are provided.

While the quiz will provide you with information about what the students have learned, it does not assess how students have processed the information. Below you will find assessment ideas that can be used to measure both content and process.

A Sample Assessment for *Blood and Circulation*

1. Explain to students that an important aspect of scientific inquiry is to communicate findings to others. In this assessment, students will present the following information to their peers:
 - The question they investigated.
 - The method that was used to find answers to their question.
 - Problems or successes during the search.
 - Answers to their question.
 - Current research related to their question.
 - New questions that have arisen.

2. Distribute the rubric found in the Lesson Planning Worksheet (see page 13) to students so they know how they will be assessed. Make sure students understand the criteria found in the rubric. Before you begin, you may want to allow students to make changes to the rubric so that it is clearer or makes more sense from their perspectives.

3. Allow students time to gather information to answer their questions and to prepare for their presentations. As students conduct this work, walk around the room and ask questions to assess their progress and provide input as needed.

4. Take a few minutes to clarify the rules of the presentation with the students. You may want to have multiple copies of the rubric available so that peers can rate the presentations.

5. As presentations are made, assess the quality of the student's work as thoroughly and as equitably as you possibly can.

Congratulations! You have now completed the steps to set up a lesson plan using the Lesson Planning Worksheet. You have also explored many of the features of the Bill Nye DVD as well as the supplemental information found in this Teacher's Guide. And most important, you've made significant strides toward incorporating DVD technology into your day-to-day instruction.
Science as Inquiry

Abilities necessary to do scientific inquiry

- Design and conduct a scientific investigation.
- Use appropriate tools and techniques to gather, analyze, and interpret data.
- Develop descriptions, explanations, predictions, and models using evidence.
- Think critically and logically to make the relationships between evidence and explanations.

Understandings about scientific inquiry

- Different kinds of questions suggest different kinds of scientific investigations. Some investigations involve observing and describing objects, organisms, or events; some involve collecting specimens; some involve experiments; some involve seeking more information; some involve discovery of new objects and phenomena; and some involve making models.

Physical Science

Properties and changes of properties in matter

- A substance has characteristic properties, such as density, a boiling point, and solubility, all of which are independent of the amount of the sample. A mixture of substances often can be separated into the original substances using one or more of the characteristic properties.

- Substances react chemically in characteristic ways with other substances to form new substances (compounds) with different characteristic properties. In chemical reactions, the total mass is conserved. Substances often are placed in categories or groups if they react in similar ways; metals is an example of such a group.

Life Science

Structure and function in living systems

- Living systems at all levels of organization demonstrate the complementary nature of structure and function. Important levels of organization for structure and function include cells, organs, tissues, organ systems, whole organisms, and ecosystems.

Populations and ecosystems

- A population consists of all individuals of a species that occur together at a given place and time. All populations living together and the physical factors with which they interact compose an ecosystem.
Earth and Space Science

Structure of the earth system

- Water is a solvent. As it passes through the water cycle it dissolves minerals and gases and carries them to the oceans.
- The atmosphere is a mixture of nitrogen, oxygen, and trace gases that include water vapor. The atmosphere has different properties at different elevations.
- Fossils provide important evidence of how life and environmental conditions have changed.

Science and Technology

Understandings about science and technology

- Scientific inquiry and technological design have similarities and differences. Scientists propose explanations for questions about the natural world, and engineers propose solutions relating to human problems, needs, and aspirations. Technological solutions are temporary; technologies exist within nature and so they cannot contravene physical or biological principles; technological solutions have side effects; and technologies cost, carry risks, and provide benefits.
- Perfectly designed solutions do not exist. All technological solutions have trade-offs, such as safety, cost, efficiency, and appearance. Engineers often build in back-up systems to provide safety. Risk is part of living in a highly technological world. Reducing risk often results in new technology.
- Technological designs have constraints. Some constraints are unavoidable, for example, properties of materials, or effects of weather and friction; other constraints limit choices in the design, for example, environmental protection, human safety, and aesthetics.
- Technological solutions have intended benefits and unintended consequences. Some consequences can be predicted, others cannot.

Science in Personal and Social Perspectives

Personal health

- Natural environments may contain substances (for example, radon and lead) that are harmful to human beings. Maintaining environmental health involves establishing or monitoring quality standards related to use of soil, water, and air.

Populations, resources, and environments

- When an area becomes overpopulated, the environment will become degraded due to the increased use of resources.
- Causes of environmental degradation and resource depletion vary from region to region and from country to country.

Natural hazards

- Human activities also can induce hazards through resource acquisition, urban growth, land-use decisions, and waste disposal. Such activities can accelerate many natural changes.
Risks and benefits

- Risk analysis considers the type of hazard and estimates the number of people that might be exposed and the number likely to suffer consequences. The results are used to determine the options for reducing or eliminating risks.

- Students should understand the risks associated with natural hazards (fires, floods, tornadoes, hurricanes, earthquakes, and volcanic eruptions), with chemical hazards (pollutants in air, water, soil, and food), with biological hazards (pollen, viruses, bacterial, and parasites), social hazards (occupational safety and transportation), and with personal hazards (smoking, dieting, and drinking).

Science and technology in society

- Science influences society through its knowledge and world view. Scientific knowledge and the procedures used by scientists influence the way many individuals in society think about themselves, others, and the environment. The effect of science on society is neither entirely beneficial nor entirely detrimental.

- Technology influences society through its products and processes. Technology influences the quality of life and the ways people act and interact. Technological changes are often accompanied by social, political, and economic changes that can be beneficial or detrimental to individuals and to society. Social needs, attitudes, and values influence the direction of technological development.

- Science cannot answer all questions and technology cannot solve all human problems or meet all human needs. Students should understand the difference between scientific and other questions. They should appreciate what science and technology can reasonably contribute to society and what they cannot do. For example, new technologies often will decrease some risks and increase others.

History and Nature of Science

Science as a human endeavor

- Science requires different abilities, depending on such factors as the field of study and type of inquiry. Science is very much a human endeavor, and the work of science relies on basic human qualities, such as reasoning, insight, energy, skill, and creativity—as well as on scientific habits of mind, such as intellectual honesty, tolerance of ambiguity, skepticism, and openness to new ideas.
Episode Guide

Pollution Solutions

Nifty Questions in This Episode

<table>
<thead>
<tr>
<th>Question</th>
<th>Awesome Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>What are some causes of pollution?</td>
<td>Gas and oil spills, carbon dioxide, carbon monoxide, noise, chemicals, burning trash and wood.</td>
</tr>
<tr>
<td>Why can’t pollution leave the Earth?</td>
<td>The Earth has a closed system.</td>
</tr>
<tr>
<td>How is pollution carried and spread?</td>
<td>With rain and wind.</td>
</tr>
</tbody>
</table>

Experiments shown on the video:

WILL IT BE GONE?

Objective: To determine the decay rate of certain substances.

- Fill six jars halfway with water.
- Place a different kind of trash in each jar and label the jar.
- Place each jar in the sun for a few days and observe what happens to the various kinds of trash or garbage in the presence of heat and moisture.

More interesting stuff to do:

STICKY WICKET!

Objective: To count the number of particles suspended in our atmosphere.

- Smear eight pieces of white cardboard or stiff paper with petroleum jelly. Place the cardboard in different areas inside and outside your home or school.
- After one week, collect the cardboard and observe the surface of each piece, noticing any pollution or particles that have been collected (stuck to the paper).
- Estimate the number of particles on each piece of cardboard by counting the number of particles in a small area (you may need a magnifying glass) and multiplying by the total area. Multiply this figure by the approximate area of your house or school. This should give you a better understanding of the amount of pollution in your locale.

FRENCH FRIED!

Objective: To observe the effects of oil on vegetation in water.

- Ask your parents or teacher to collect the drippings and oil left over from fried foods and place them in a coffee can.
- Add water the next day or when oil becomes cool. (Do not add water when oil is hot because it may spray on you.)
- Observe the contents of the can and make a drawing of the mixture that you see.
- Add salt, plants, sticks, and other vegetation to the water and stir. Observe any changes and effects. Can you tell how oil in ocean water would affect marine life?
Lesson Planning Worksheet

<table>
<thead>
<tr>
<th>Lesson Title</th>
<th>National Science Educational Standards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estimated Time Required</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Materials Needed</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explore

- Explore
- Explore
- Explore
- Explore

Apply

- Apply
- Apply
- Apply
- Apply

Extend

- Extend
- Extend
- Extend
- Extend
As presentations are made, assess the quality of the student’s work as thoroughly and as equitably as you possibly can. The following criteria can be used to assist in your assessment.

Name of Student __________________________

Question Investigated __________________________

<table>
<thead>
<tr>
<th>Initial Question</th>
<th>Methods for Finding Answers</th>
<th>Results</th>
<th>Communication</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Question is broad and not well defined</td>
<td>1 Students do not share planned or actual methods.</td>
<td>1 Student results are undefined.</td>
<td>1 Student is not prepared to speak.</td>
</tr>
<tr>
<td>2 Question is defined but limited to single-answer responses.</td>
<td>2 Students share methods but they are unclear or vague.</td>
<td>2 Student results are incomplete and do not adequately answer the question.</td>
<td>2 Presenter has distracting mannerisms and avoids eye contact with the audience.</td>
</tr>
<tr>
<td>3 Question is clear and might elicit multiple responses that may lead to new ideas and additional questions.</td>
<td>3 Students share methods but not the problems or successes of using the methods.</td>
<td>3 Student results are complete, adequately answer the question, and include current research related to the question.</td>
<td>3 Presentation is clean and clear with some eye contact and very few distractions.</td>
</tr>
<tr>
<td>4 Question is engaging and provokes new ways of thinking about an issue.</td>
<td>4 Students share methods and problems or successes in using the methods.</td>
<td>4 Student results are complete, include current research, and have resulted in one or more additional questions.</td>
<td>4 Presentation is exceptional and unique. Presenter uses regular eye contact and avoids distractions.</td>
</tr>
<tr>
<td>Know</td>
<td>New</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write down what you know about the topic of the video.</td>
<td>Write down information from the video that is new to you.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Closed System
A system in which matter is not allowed to exchange with the surroundings, but energy is permitted to enter and leave the system.

Pollution
The spreading of a dangerous material throughout the environment.

Non-Point Source Pollution
Also known as area pollution occurs when the pollution is spread out by multiple sources.

Noise Pollution
Any sound that is undesirable or interferes with one’s ability to hear something else.
Fold and cut to use as flashcards.

Biodegradable
Describes matter that can be broken down into simpler substances by decomposer organisms. Biodegradable material can be reused to help organisms live and grow.

Sewage Treatment Plant
A sewage treatment plant cleans water containing human excreta and domestic or industrial waste.

Decibel
A unit for measuring the relative loudness of sound.

Air Pollution
The spreading of a dangerous material in the atmosphere.
Quiz
Pollution Solutions

True or False? Circle T or F

1. Some sound can be considered noise pollution and can affect entire ecosystems. T or F
2. Plastic can be recycled easier than paper. T or F
3. Plastic is more durable and therefore can be re-used more often than paper. T or F
4. Once water is polluted it is not possible for it to be cleaned before returning to the ecosystem. T or F
5. Pollution from a landfill can end up in rivers, lakes, and streams. T or F
6. Water that goes down a storm drain is cleaned just like water that is flushed in a toilet. T or F
7. Electric cars do not cause any air pollution. T or F

Multiple Choice: Circle the letter of the best answer

8. Which of the following is an example of non-point source pollution that affects the atmosphere?
 A. Smoking
 B. Cutting grass
 C. Driving motorcycles
 D. All of the above

9. Which of the following is true about non-point source air pollution?
 A. It is not very harmful to the atmosphere.
 B. When a lot of people are making it, it can add up.
 C. It does not spread out the pollution into the air as much as point source.
 D. None of the above.

10. Which of the following causes acid rain?
 A. Sulfur can mix with atmospheric gases to form sulfuric acid.
 B. Nitrogen can mix with atmospheric gases to form nitric acid.
 C. Neither A or B.
 D. Both A and B.
<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>4.</th>
<th>7.</th>
<th>9.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>2.</th>
<th>5.</th>
<th>8.</th>
<th>10.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>F</td>
<td>T</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>

Biodegradable